
Improving Developers' Understanding of Regular Expression Denial
of Service (ReDoS) through Anti-Patterns and Fix Strategies

Zainab Aamir
INTRODUCTION

- Regular expressions are a common tool for
text manipulation tasks such as input
validation. They can also lead to a security
vulnerability called ReDoS (Regular
Expression Denial of Service). This attack is
caused by a worst case super-linear regex
matching time.

- Proposed defenses include automated
tools to detect these regexes and fix them.
Their usability has not been studied.

- In our work, we introduce a set of anti-
patterns to identify vulnerable regexes and
fix strategies to repair the regexes. The
anti-patterns are based on concept of
infinite ambiguity in regexes.

- We investigate how our anti-patterns and
strategies help developers’ understanding
of ReDoS and the outcome of existing
detection and repair tools.

ACKNOWLEDGEMENTS

METHODOLOGY AND RESULTS

- The antipatterns were evaluated on Kleene-regular regexes to detect IA regexes
using the largest available dataset of real-world regexes[1]. They were
compared with state-of-the-art anti-patterns[2]. Our anti-patterns led to an
increase in precision and recall and no false positives. Results in Figure 4.

- To study the effectiveness of our anti-patterns in detecting IA regexes, we
interviewed 20 software developers and asked them to perform simple regex
composition tasks and detect IA in their regexes using SOA anti-patterns and
our anti-patterns. Our anti patterns outperformed the SOA by 50%
effectiveness as seen in Figure 5.

- To study how well our anti-patterns complement existing automatic tools, we
interviewed 9 software developers who had written IA regexes in open-source
projects. For detection and repair, the developers first used the tool alone and
then the tool combined with our anti-patterns(detection) and fix
strategies(repair). Results showed that subjects reported much higher
understanding, going from “very weakly” understanding to “strongly” for
detection and ”very strongly” for repair.

Partial support provided by NSF award
#2135156 and URJC award C01INVESDIST.

Figure 4: Comparison with SOA anti-patterns

Figure 5: Results of the first experiment

Figure 6: Tasks for the second experiment
Figure 3: Our proposed anti-patterns

Figure 7: Results of the second experiment in
repairing IA regexes

Sk Adnan Hassan, Zainab Aamir, Dongyoon Lee, James C. Davis, Francisco Servant

- Regexes have various degrees of
ambiguity: none, finite or infinite. Infinite
ambiguity (IA) leads to a super-linear time
complexity during regex matching. IA
regexes can have a polynomial degree of
ambiguity (PDA) or an exponential degree
of ambiguity (EDA) .

- An example of a regex with EDA is
/^(a+)+$/ , an input that would trigger
super-linear behavior is “aaaaaaaa!”

BACKGROUND

Figure 1: PDA and EDA in the NFA

REFERENCES

[1] J. C. Davis, L. G. Michael IV, C. A. Coghlan, F.
Servant, and D. Lee, “Why aren’t regular
expressions a lingua franca? an empirical study
on the re-use and portability of regular
expressions,” in (ESEC/FSE), 2019.
[2] J. C. Davis, C. A. Coghlan, F. Servant, and D.
Lee, “The Impact of Regular Expression Denial
of Service (ReDoS) in Practice: an Empirical
Study at the Ecosystem Scale,” in (ESEC/FSE),
2018

Figure 2: NFA for the SL regex /^(a+)+$/

