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INTRODUCTION

- Regular expressions are a common tool for 
text manipulation tasks such as input 
validation. They can also lead to a security 
vulnerability called ReDoS (Regular 
Expression Denial of Service). This attack is 
caused by a worst case super-linear regex 
matching time.

- Proposed defenses include automated 
tools to detect these regexes and fix them. 
Their usability has not been studied. 

- In our work, we introduce a set of anti-
patterns to identify vulnerable regexes and 
fix strategies to repair the regexes. The 
anti-patterns are based on concept of 
infinite ambiguity in regexes.

- We investigate how our anti-patterns and 
strategies help developers’ understanding 
of ReDoS and the outcome of existing 
detection and repair tools. 
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METHODOLOGY AND RESULTS

- The antipatterns were evaluated on Kleene-regular regexes to detect IA regexes 
using the largest available dataset of real-world regexes[1]. They were 
compared with state-of-the-art anti-patterns[2]. Our anti-patterns led to an 
increase in precision and recall and no false positives. Results in Figure 4.

- To study the effectiveness of our anti-patterns in detecting IA regexes, we 
interviewed 20 software developers and asked them to perform simple regex 
composition tasks and detect IA in their regexes using SOA anti-patterns and 
our anti-patterns. Our anti patterns outperformed the SOA by 50% 
effectiveness as seen in Figure 5. 

- To study how well our anti-patterns complement existing automatic tools, we 
interviewed 9 software developers who had written IA regexes in open-source 
projects. For detection and repair, the developers first used the tool alone and 
then the tool combined with our anti-patterns(detection) and fix 
strategies(repair). Results showed that subjects reported much higher 
understanding, going from “very weakly” understanding to “strongly” for 
detection and ”very strongly” for repair. 
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Figure 4: Comparison with SOA anti-patterns 

Figure 5:  Results of the first experiment

Figure 6:  Tasks for the second experiment
Figure 3:  Our proposed anti-patterns

Figure 7: Results of the second experiment in 
repairing IA regexes
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- Regexes have various degrees of 
ambiguity: none, finite or infinite. Infinite 
ambiguity (IA) leads to a super-linear time 
complexity during regex matching. IA 
regexes can have a polynomial degree of 
ambiguity (PDA) or an exponential degree 
of ambiguity (EDA) .

- An example of a regex with EDA is 
/^(a+)+$/ , an input that would trigger 
super-linear behavior is “aaaaaaaa!”
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Figure 1:  PDA and EDA in the NFA
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Figure 2:  NFA for the SL regex /^(a+)+$/ 


