
Agentic AI: A Case Study on the Visualization Publications Dataset
Zainab Aamir*

Stony Brook University
Saeed Boorboor†

University of Illinois Chicago
Arie E. Kaufman,‡

Stony Brook University

Figure 1: Workflow of our agentic pipeline.Inspect Dataset, our agent classifies the dataset and identifies candidate text fields.
Route Agent then selects the target field based on dataset type. Next, Analyzing Text applies hybrid keyword extraction, embed-
dings, and clustering, followed by LLM-based summarization to derive concise labels. In Plot Generation, a two-stage process
produces validated Vega–Lite specifications. Finally, Validation and Refinement ensures correctness, readability, and narrative
coherence before assembling the final gallery.

ABSTRACT

Large Language Models (LLMs), trained on vast and diverse cor-
pora, have demonstrated strong capabilities in reasoning across do-
mains and generating structured outputs such as code, text, and
visual encodings. However, when used in isolation, LLMs often
struggle with reliability, correctness, and readability. This has mo-
tivated significant interest in agentic Artificial Intelligence (AI) sys-
tems that scaffold, validate, and refine the model’s behavior for
trustworthy and autonomous decision-making. In this paper, we
present an agent that inspects unfamiliar datasets, classifies their
type, and routes them through tailored processing pipelines. For
the VIS Publication dataset, the agent selects the Abstract column
as the richest semantic signal of research content and performs tem-
poral topic evolution to trace how visualization research themes
emerge and shift over time. The pipeline combines deterministic
text-mining components with selective LLM usage for concise clus-
ter labeling, thereby reducing redundant token consumption while
leveraging LLM’s summarization strengths. Intermediate results
are persisted as augmented datasets and hosted via GitHub Pages,
providing stable and reproducible data sources for subsequent vi-
sualization stages. The agent constrains generation to lightweight,
interactive Vega–Lite specifications, integrates validation mecha-
nisms to detect and repair errors, and produces a final gallery of
interpretable, publication-quality visualizations. This design em-
phasizes flexibility across dataset types while ensuring efficiency,
robustness, and narrative coherence in the resulting analyses.

1 INTRODUCTION

Large Language Models (LLMs) have rapidly emerged as power-
ful assistants for data analysis and visualization, demonstrating the
ability to interpret unfamiliar datasets and produce structured out-
puts with minimal human input [1, 2]. Recent progress in LLM-
based agents highlights their potential for automating visualization
workflows across domains, lowering barriers for novice users and
broadening access to advanced techniques. LLM-driven visualiza-
tion is particularly attractive for rapid dataset exploration and report
generation [3], yet producing reliable, readable, and publication-
quality outputs remains challenging [4, 5]. Traditionally, visualiza-

*e-mail: zaamir@cs.stonybrook.edu
†e-mail: boorboor@uic.edu
‡e-mail: ari@cs.stonybrook.edu

tion design requires substantial expertise in data wrangling [6], en-
coding design decisions, and chart construction [7], which has mo-
tivated systems that recommend or constrain visualization design
choices [8, 9]. The Agentic Visualization Challenge emphasizes
automation, dataset-agnostic pipelines, and the generation of co-
herent, reproducible visualizations. To address these goals, we pro-
pose an agentic workflow for dataset-aware visualization generation
that integrates structured planning, routing, and validation to ensure
trustworthy results. For the Visualization Publication Dataset [10],
our agent focuses on the Abstract column. This column is selected
as it offers the richest semantic signal of research content. After se-
lecting the column, our agent’s hybrid architecture combines deter-
ministic text-mining with selective LLM usage: KeyBERT [11] ex-
tracts candidate terms, HDBSCAN [12] clusters them, and finally,
the LLM generates concise, human-readable labels for the clusters.
This design reduces redundant model usage while leveraging the
summarization strengths of LLMs, yielding interpretable, semanti-
cally coherent categories that ground downstream visualizations in
meaningful research themes.

We present a compact gallery of visualizations with descriptive
captions, packaged in an interactive HTML report.

2 SYSTEM OVERVIEW

The agent executes a six-stage pipeline over an unfamiliar dataset
in a CSV file. The pipeline is shown in Fig. 1. First, Inspection
and Routing builds a schema preview, assigns a dataset type via a
strict JSON contract with conservative fallbacks, and identifies the
primary text field from which interpretable research areas can be
derived. Next, Analyzing Text applies a hybrid pipeline combin-
ing KeyBERT, embeddings, and HDBSCAN clustering, followed
by concise LLM-generated labels. Plot Generation produces com-
pact, strict Vega–Lite only specifications to ensure portability and
reproducibility. Validation then verifies field existence, encoding
correctness, and overall readability. Although our pipeline encodes
interactive elements, interactivity remains limited by the current ca-
pabilities of Vega–Lite. Finally, Gallery Composition deduplicates
plots, adds captions, and assembles a self-contained HTML report.
Our pipeline aligns with the challenge’s emphasis on automation,
dataset-agnostic pipelines, and insightful outputs.

3 METHODS

This section details the technical implementation of each stage in
the pipeline, including our agent’s state.

3.1 Inspection and Routing

The first stage of the workflow generates a dataset preview, consist-
ing of the schema and a small sample of rows, and forwards it to
a schema-aware router. The router classifies the dataset as one of
text corpus, tabular generic, time series, graph edges,
geo, with a conservative fallback to tabular generic to en-
sure robustness when schema inference is uncertain. We selected
these dataset types because they span a broad range of common
dataset categories frequently encountered in visualization research
and practice [13].

It returns a strict JSON contract specifying the dataset type, per-
column roles, representative examples, and rationales with confi-
dence scores. This contract guides subsequent stages, constrains
the agent to Vega–Lite compatible transforms, and prevents invalid
field references. In addition, the router ranks the top three candi-
dates for the primary text field, the primary text field is defined as
the column that best conveys the topic and overview of each record
in the dataset. In the current dataset, it deterministically selects the
Abstract column. An example contract is shown in Fig. 2.

{
"dataset_type": "text_corpus",
"columns": {
"Abstract": {
"role": "text",
"example": "..."

}
},
"rationale": "..",
"confidence": 0.82

}

Figure 2: Truncated JSON snippet showing per-column roles in the
schema contract.

3.2 Analyzing Text

Once the primary text field is identified, we apply KeyBERT
(all-mpnet-base-v2) [11] to extract high-relevance phrases,
which are then normalized, embedded, and reduced with PCA be-
fore clustering with HDBSCAN [12]. Oversized clusters are re-
cursively split to control growth and prevent excessive downstream
LLM usage. The LLM is reserved for the final step, where it gen-
erates concise, human-readable labels that balance interpretability
and efficiency. The resulting augmented dataset, which includes
cluster assignments and labels, is published via GitHub Pages as a
persistent resource for the agent.

3.3 Plot Generation

We employ a two-stage workflow to generate visualizations in a
controlled and reproducible way. In the first stage, a planner agent
is prompted to produce a structured JSON plan specifying the chart
type, encoding channels, and a brief rationale for its design choice.
This step is performed at a deterministic, low-temperature setting to
minimize variance and ensure stable outputs across repeated calls.
The planner’s output externalizes design intent while remaining
lightweight, avoiding the overhead of full chart specifications at this
stage.

In the second stage, a coder agent consumes the planner’s
JSON and produces a complete Vega–Lite specification. Here, the
agent enforces strict guardrails: the data source must be the aug-
mented dataset, encodings must reference existing schema fields,
and transforms are restricted to Vega–Lite operators. This design
guards against hallucinated fields or unsupported constructs and
ensures the generated visualizations are portable, scalable, and in-
terpretable. By staging the process, we limit token usage, avoid
redundant free-form generations, and reserve the LLM’s reasoning
capacity for the parts of the pipeline where abstraction and design

decisions are being made, where it adds the most value. Example
output is shown in Fig. 3.

Example: high-level plan request

plan_req = {

"fields": [

{"name": "Year", "type": "temporal"},

{"name": "Area", "type": "nominal"}

],

"task": "Show how research clusters evolve over time."

}

Planner returns structured JSON

{

"chart_type": "area",

"encoding": {"x": "Year", "y": "papers", "color": "Area"},

"insight": "Tracks growth and decline of topics",

"title": "Topic Evolution by Year"

}

Figure 3: Planner stage output: structured JSON specifying chart
type, encodings, and rationale before translation into a full Vega–Lite
specification.

The generated plan is then translated by the coder into a full
Vega–Lite specification. This separation between planning and cod-
ing improves reproducibility, reduces token costs, and enhances ex-
plainability of the workflow by clearly documenting design intent
before execution.

3.4 Validation and Refinement
In the final stage, interactive elements are encoded within each plot,
after which the agent is supplied with the finalized Vega-Lite spec-
ifications. The agent then generates concise captions that highlight
key insights, ensuring clarity and narrative coherence across visual-
izations. This process refines the outputs, validates their readability,
and ties the story together.

3.5 Final Gallery
Our final gallery consists of three interactive plots, available here.

4 LIMITATIONS

Through the two-step node plot generation process, the agent func-
tions best on relatively basic functions which significantly caps in-
teraction complexity. Additionally, our cluster quality depends on
keyword extraction and density-based clustering choices, and labels
inherit any bias present in the text. Although we curb token usage
by deferring the LLM to the final stage, label quality can degrade
for small or highly overlapping clusters.

5 CONCLUSION

We presented an agentic workflow for dataset-aware visualization
that couples deterministic text mining with selective LLM usage,
a planner-coder split for controlled visualization specification, and
a validator to enforce schema compliance. By constraining visual-
ization generation to Vega–Lite and hosting an augmented dataset
online, our system favors portability, reproducibility, and cost effi-
ciency, while still leveraging LLM strengths.

REFERENCES

[1] Yuheng Zhao, Yixing Zhang, Yu Zhang, Xinyi Zhao, Junjie Wang,
Zekai Shao, Cagatay Turkay, and Siming Chen. Leva: Using large
language models to enhance visual analytics. IEEE Transactions on
Visualization and Computer Graphics, 31(3):1830–1847, 2024. 1

[2] Karim Huesmann and Lars Linsen. Large language models for trans-
forming categorical data to interpretable feature vectors. IEEE Trans-
actions on Visualization and Computer Graphics, 2024. 1

https://www.visagent.org/api/output/314c6b9a-befb-4bd2-8f38-35668eca1729

[3] Nan Chen, Yuge Zhang, Jiahang Xu, Kan Ren, and Yuqing Yang. Vi-
seval: A benchmark for data visualization in the era of large language
models. IEEE Transactions on Visualization and Computer Graphics,
2024. 1

[4] Alexander Bendeck and John Stasko. An empirical evaluation of
the gpt-4 multimodal language model on visualization literacy tasks.
IEEE Transactions on Visualization and Computer Graphics, 2024. 1

[5] Yuan Cui, W Ge Lily, Yiren Ding, Lane Harrison, Fumeng Yang, and
Matthew Kay. Promises and pitfalls: Using large language models to
generate visualization items. IEEE Transactions on Visualization and
Computer Graphics, 2024. 1

[6] Sean Kandel, Jeffrey Heer, Catherine Plaisant, Jessie Kennedy, Frank
van Ham, Nathalie Henry Riche, Chris Weaver, Bongshin Lee, David
Brodbeck, and Paolo Buono. Research directions in data wrangling:
Visualizations and transformations for usable and credible data. Infor-
mation Visualization, 10(4):271–288, 2011. 1

[7] Tamara Munzner. Visualization Analysis and Design. CRC Press,
2014. 1

[8] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock
Mackinlay, Bill Howe, and Jeffrey Heer. Voyager: Exploratory anal-
ysis via faceted browsing of visualization recommendations. IEEE
Transactions on Visualization and Computer Graphics, 22(1):649–
658, 2016. 1

[9] Dominik Moritz, Chenglong Wang, Gregory L. Nelson, Huy Nguyen,
Adam M. Smith, Bill Howe, and Jeffrey Heer. Formalizing visual-
ization design knowledge as constraints: Actionable and extensible
models in draco. IEEE Transactions on Visualization and Computer
Graphics, 25(1):438–448, 2019. 1

[10] Petra Isenberg, Florian Heimerl, Steffen Koch, Tobias Isenberg, Pan-
pan Xu, Charles D. Stolper, Michael Sedlmair, Jian Chen, Torsten
Möller, and John Stasko. vispubdata.org: A metadata collection about
IEEE visualization (VIS) publications. IEEE Transactions on Visual-
ization and Computer Graphics, 23(9):2199–2206, September 2017.
1

[11] Maarten Grootendorst. Keybert: Minimal keyword extraction with
bert embeddings.
urlhttps://doi.org/10.5281/zenodo.4461265, 2021. Software; version
v0.1.3 archived on Zenodo. 1, 2

[12] Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical
density based clustering. Journal of Open Source Software, 2(11):205,
2017. 1, 2

[13] Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In The craft of information visualization,
pages 364–371. Elsevier, 2003. 2

	Introduction
	System Overview
	Methods
	Inspection and Routing
	Analyzing Text
	Plot Generation
	Validation and Refinement
	Final Gallery

	Limitations
	Conclusion

